Fun!(damental) and

Fun!(ctional):
An Introduction to Table-driven
Programming

@) Profound Ted Holt

Sr. Software Developer, Profound Logic Software
Sr. Technical Editor, Four Hundred Guru

Agenda

Demonstration
» Areal-life example [{iillf

 Definition

Procedural Programming

* Also called imperative programming

* The programmer writes a series of
commands in a computer language. The
computer executes the commands to
achieve a desired result.

Example

1f Age < 6;

AgeCategory = 'Preschool’;
elseif Age < 18;

AgeCategory = 'School age’;
else;

AgeCategory = 'Graduate'’;
endif;

Table-driven Programming

* Program logic is stored in an array (table).

* The computer interprets the instructions in
the table, calling appropriate routines, to
achieve the desired result.

Table-driven Logic

set current state =1
do

get Input

get action and next state from

the state table

execute the action

set current state = next state
until current state = 0

The engine (interpreter) is a simple fetch-execute loop.

The programmer must write a routine for each action, except for no-action.

Conditional logic (if-then-else) is handled by a state table.

A Few Advantages

Handles logic that is not easily expressed
In procedural programming.

Logic can be changed by changing the
table (permanently or at run time).

Non-programmers can work on program
logic.
The same engine (interpreter) can be re-
used.

A Few Advantages

* The table is portable to other languages.

* A program is easily enhanced by
modifying the table and writing routines for
new actions.

Agenda

* Definition
e Demonstration
* Areal-life example

The Challenge
Split a DOS-like file name into:

e drive
e path

e base name
 extension.

The file name may have any or all four parts.

Do not assume the file name is valid!

Example 1

CATmp\MyFile. TXT

* Drive =C

« Path =\Tmp\
 Base name = MyFile
o Extension = TXT

Example 2

\Tmp\2014\MyData

* Drive = not specified

« Path =\Tmp\2014\
 Base name = MyData

« Extension = not specified

Example 3

| Eror =

\Tmp/2014\piggy.pdf

Q Computer self-destruct sequence initiated!

I nVa I |d ' Ka-Pow! Bang!

Why??

Think about It

How would you accomplish this task
In your preferred programming
language?

Would this be an easy task?

You would probably need a lot of IF statements. For example:

e Ifthe second character is a colon, the first character is the drive. If, thatis, the first character is a
letter.

e Ifthere is a period within the last four characters, whatever follows the period, if anything, is the
extension.

And so forth.

I contend that this task would be a nightmare with procedural programming. But I could be wrong.

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

State Table

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

The table is two-dimensional.

The rows of the table correspond to the five states of the program.

The columns correspond to the possible input values. Notice that some columns represent single
characters, while others represent categories of characters.

EOI is short for "end of input”. This is the imaginary character that follows the last non-blank character of
the file string.

Each element (cell) of the table contains two values: an action code and next state.

States

Looking for drive, path, or base name
Looking for colon, path or base name

Looking for path or base name

Building path or base name; looking for
extension.

Building extension; looking for EOI.

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

State Table

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

CT

ER
NO
TB
TE
D

TP

Actions

Append current character to
token.

Process an error.

Take no action.

Copy token to base name.
Copy token to extension.

Copy token to drive.

Append current character to token
and append token to path.

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

T2
CT4
CT4
CT4

CT5

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

token=c

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat drive=c

State EOl Blank Letter Digit : \ . Other
1 NOO NO1 CT2 CT4 ERO TP4 ERO ERO
2 ERO ERO CT4 CT4 TD3 ERO ERO ERO
3 TDO ERO CT4 CT4 ERO TP4 TBS5 ERO

4 TBO ERO CT4 CT4 ERO TP4 TB5 ERO

5 TEO ERO CT5 CT5 ERO ERO ERO ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

ERO

path=\

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

token=t

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

token=tm

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

token=tmp

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat path=\tmp\

State EOl Blank Letter Digit : \ . Other
1 NOO NO1 CT2 CT4 ERO TP4 ERO ERO
2 ERO ERO CT4 CT4 TD3 ERO ERO ERO
3 TDO ERO CT4 CT4 ERO TP4 TBS5 ERO
4 TBO ERO CT4 CT4 ERO TP4 TBS ERO

5 TEO ERO CT5 CT5 ERO ERO ERO ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

Digit

CT4

CT4

CT4

CT4

CTS5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

token=Db

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat token=Dbr

State EOl Blank Letter Digit : \ . Other
1 NOO NO1 CT2 CT4 ERO TP4 ERO ERO
2 ERO ERO CT4 CT4 TD3 ERO ERO ERO
3 TDO ERO CT4 CT4 ERO TP4 TBS5 ERO
4 TBO ERO CT4 CT4 ERO TP4 TBS5 ERO

5 TEO ERO CT5 CT5 ERO ERO ERO ERO

c:\tmp\br549.dat

State EOI Blank Letter
1 NOO NO1 CT2
2 ERO ERO CTA4
3 TDO ERO CT4
4 TBO ERO CTA4
5 TEO ERO CT5

Digit

CT4

CT4

ERO

TD3

ERO

ERO

ERO

token=br5

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

ERO

TD3

ERO

ERO

ERO

token=br54

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

ERO

TD3

ERO

ERO

ERO

token=br549

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

CT4

CT4

CTS5

base name=br549

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

Digit

CT4

CT4

CT4

CT4

CT>5

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

token=d

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

Digit

CT4

CT4

CT4

CT4

CT>5

ERO

TD3

ERO

ERO

ERO

token=da

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State EOI

1 NOO NO1

2 ERO
3 TDO
4 TBO

5 TEO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

Digit

CT4

CT4

CT4

CT4

CT>5

ERO

TD3

ERO

ERO

ERO

token=dat

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

c:\tmp\br549.dat

State

EOI

NOO NO1

ERO

TDO

TBO

Blank Letter

ERO

ERO

ERO

ERO

CT 2

CT4

CT4

CT4

CT5

Digit

CT4

CT4

CT4

CT4

CT>5

extension=dat

ERO

TD3

ERO

ERO

ERO

TP 4

ERO

TP 4

TP 4

ERO

ERO

ERO

TB5

TB5

ERO

Other

ERO

ERO

ERO

ERO

ERO

drive =c

path = \tmp\

base name = br549
extension = dat

Look, Mal
No if's!

* Definition
e Demonstration
* A real-life example

BASS

A scripting language

Pronounced like the fish, not the low-voice
male singer

Short for "Build a spreadsheet”

Reads an SCS report and uses a script to
produce a CSV file

Uses six table-driven routines
Runs on IBM |

BASS Logic

Toop
read a 1ine of the report
1f end-of-file then exit loop
execute the script

end-1oop
Cem e
O _

Accounts Receivable by

State

Name

Account

X
X
State

Grand

Abraham

Alison
total

Lee

Jones
Tyron
total

Henning

583990
846283

192837
839283
397267

938472

williams 593029

total

total

** End of report **

State

11/20/14

Hector
Clay
Hector

Dallas
Dallas

589.
37.
25.
62.

1,161.

The Script, Page 1 of 3

Accounts receivable by state
var $HeadersBuilt = NO

Skip unneeded lines

/ $Input == / exit
/ $Input (1 : 2) == "Ac' / goto 100
/ $Input (1 : 2) == "'St' / exit
/ $Input (1) === / exit
/ $Input (1 : 5) == State / exit
/ $Input (1 : 5) == Grand / stop

The first line is a comment. Comments begin with the pound (hash) sign and extend through the end of
the line. A comment may occupy a line by itself or be placed on a line after commands.

This script contains one variable, $HeadersBuilt. Variable names begin with a dollar sign and are not
case-sensitive. Variables are 256-byte variable-length string. This variable has an initial value of NO.
Variables do not have to be initialized.

When BASS reads a report line, it copies the text of the line into the $Input variable.

The expressions within slashes are conditional expressions. Think of them as an IF. The first test
compares $Input to a blank. This tests for blank lines on the report. If a line is blank, the exit
instruction executes. The exit instruction tells BASS to quit processing this report line and proceed to
the next one.

The following conditions use reference modifiers to test parts of a report line. A reference modifier
consists of a beginning position and a length surrounded by parentheses and separated from one
another by a colon. If the length is not given, it is assumed to mean one character. Most of these tests
look for header and footer lines, which do not need to be copied into the CSV file.

The second test executes a goto command to branch to the routine that builds the heading line in the CSV
file.

The Script, Page 2 of 3

anything else must be a detail line

$a = $Input
$b = $Input
$c = $Input
$d = $Input
$e = $Input
de-edit $e
addrow

exit

(16:6)
(7:8)
(24:8)
(1:2)
(32:8)

H H H HHF

account number
customer name
city

state

balance due

Variables $A through $Z indicate the first 26 columns of a spreadsheet. This routine copies data from the
report line into the first five columns of the CSV file.

The DE-EDIT command removes dollar signs and commas, and indicates negative values with a leading
minus sign.

The ADDROW command adds a row to the CSV file.

The EXIT command prevents control from falling through to the header routine.

The Script, Page 3 of 3

100 # header routine

/ $HeadersBuilt == YES/ exit

$a = 'Account number'
$b = 'Customer name'
$c = 'City'

$d = 'State'

$e = 'Balance due'
addrow

$HeadersBuilt = YES

This routine builds the first row, which specifies the column headings in the CSV file .

The $HeadersBuilt variable keeps this script from writing the heading row more than once. When the
heading row has been built, the value of $HeadersBuilt changes from NO to YES. The first line of the
routine exits the script if the column headings have already been written to the CSV file.

The Output

Account number,Customer name,...¥*
583990,Abraham,Isle,MN, 500
846283 ,Al1son,Isle,MN, 10
192837 ,Lee,Hector,NY,489.50
839283, Jones,Clay,NY, 100
397267 ,Tyron,Hector,NY,0
938472 ,Henning,Dallas,TX, 37
593029,will1ams,Dallas,TX,25

* The first line is truncated due to lack of space on this slide.

Free-form with Ease!

The following are equivalent:

/$Input(1l:5)==Grand/ exit

/ $Input (1 : 5) == Grand / exit

/ $Input (1 :5)== Grand / exit
/ $Input (01 : 005)== Grand / exit

/ $Input (1 : 5) == Grand / exit

etcC.

The BASS scripting language is free-format. Except for literals, you may use all the white space you want.

All of these expressions accomplish the same thing. If the first five characters of a report line are "Grand",
BASS ceases to process that report line and moves on to the next line of the report.

Without table-driven programming, it would be difficult to make BASS a free-format language.

For More Information

« BASS: Build a Spreadsheet
http://www.itjungle.com/fhg/fthg121212-story02.html

* Error-Checking Email Addresses, for

Intelligent People
http://www.itjungle.com/fhg/fhg050907-story02.html

My emall address:
fourhundredguru@gmail.com

An Example Program

See program FSMX01R.

Source code is provided with this
presentation.

The report shows the inner workings of the
state machine.

Feel free to use the code as a basis for your
own projects.

Above all, have fun!

CcurrentState = 0O;

(1. e. The End)

